Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism.
نویسندگان
چکیده
Circadian rhythms in mammals are generated by a transcriptional negative feedback loop that is driven primarily by oscillations of PER and CRY, which inhibit their own transcriptional activators, CLOCK and BMAL1. Current models posit that CRY is the dominant repressor, while PER may play an accessory role. In this study, however, constitutive expression of PER, and not CRY1, severely disrupted the clock in fibroblasts and liver. Furthermore, constitutive expression of PER2 in the brain and SCN of transgenic mice caused a complete loss of behavioral circadian rhythms in a conditional and reversible manner. These results demonstrate that rhythmic levels of PER2, rather than CRY1, are critical for circadian oscillations in cells and in the intact organism. Our biochemical evidence supports an elegant mechanism for the disparity: PER2 directly and rhythmically binds to CLOCK:BMAL1, while CRY only interacts indirectly; PER2 bridges CRY and CLOCK:BMAL1 to drive the circadian negative feedback loop.
منابع مشابه
Transcriptional and post-transcriptional regulation of the circadian clock of cyanobacteria and Neurospora.
Circadian clocks are self-sustained oscillators modulating rhythmic transcription of large numbers of genes. Clock-controlled gene expression manifests in circadian rhythmicity of many physiological and behavioral functions. In eukaryotes, expression of core clock components is organized in a network of interconnected positive and negative feedback loops. This network is thought to constitute t...
متن کاملStoichiometric relationship among clock proteins determines robustness of circadian rhythms.
The mammalian circadian oscillator is primarily driven by an essential negative feedback loop comprising a positive component, the CLOCK-BMAL1 complex, and a negative component, the PER-CRY complex. Numerous studies suggest that feedback inhibition of CLOCK-BMAL1 is mediated by time-dependent physical interaction with its direct target gene products PER and CRY, suggesting that the ratio betwee...
متن کاملRole of phosphorylation in the mammalian circadian clock.
Circadian clocks regulate a wide variety of processes ranging from gene expression to behavior. At the molecular level, circadian rhythms are thought to be produced by a set of clock genes and proteins interconnected to form transcriptional-translational feedback loops. Rhythmic gene expression was formerly regarded as the major drive for rhythms in clock protein abundance, but recent findings ...
متن کاملDifferential regulation of mPER1 and mTIM proteins in the mouse suprachiasmatic nuclei: new insights into a core clock mechanism.
Recent discoveries have identified a framework for the core circadian clock mechanism in mammals. Development of this framework has been based entirely on the expression patterns of so-called "clock genes" in the suprachiasmatic nuclei (SCN), the principal clock of mammals. We now provide data concerning the protein expression patterns of two of these genes, mPer1 and mTim. Our studies show tha...
متن کاملDistinct Roles of HDAC3 in the Core Circadian Negative Feedback Loop Are Critical for Clock Function.
In the core mammalian circadian negative feedback loop, the BMAL1-CLOCK complex activates the transcription of the genes Period (Per) and Cryptochrome (Cry). To close the negative feedback loop, the PER-CRY complex interacts with the BMAL1-CLOCK complex to repress its activity. These two processes are separated temporally to ensure clock function. Here, we show that histone deacetylase 3 (HDAC3...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cell
دوره 36 3 شماره
صفحات -
تاریخ انتشار 2009